Original Article

Isolation of Pseudomonas aeruginosa from Bovine Mastitic Milk Sample Along with Antibiogram Study

Year: 2020 | Month: April | Volume 10 | Issue 2

References (27)

1.Ama, A., El-Shafii, S.S.A., Elwahab A.M.O. and El-dayim, Z.A.A. 2016. Be detection of multidrug resistance genes in Pseudomonas aeruginosa isolated from bovine mastitic milk. J. Dairy. Vet. Anim. Res., 3(2): 43?49.

View at Google Scholar

2.Banerjee, S., Batabyal, K., Joardar, S.N., Isore, D.P., Dey, S., Samanta, I., Samanta, T.K. and Murmu, S. 2017. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet. World., 10(7): 738.

View at Google Scholar

3.Baynham, P.J. and Wozniak, D.J. 1996. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol., 22(1): 97-108.

View at Google Scholar View at PUBMED

4.Bogiel, T., Deptula, A., Kwiecinska-pirog, J.O.A.N.N.A., Pra?ynska, M., Mikucka, A. and Gospodarek-Komkowska, E. 2017. The prevalence of exoenzyme S gene in multidrugsensitive and multidrug-resistant Pseudomonas aeruginosa clinical strains. Polish J. Microbial., 66(4): 427-431.

View at Google Scholar

5.Chatterjee, M., Anju, C.P., Biswas, L., Kumar, V.A., Mohan, C.G. and Biswas, R. 2016. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol., 306(1): 48-58.

View at Google Scholar View at PUBMED

6.Engel, J. and Balachandran, P. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol., 12: 61–66.

View at Google Scholar View at PUBMED

7.Hameed, K.G.A., Sender, G. and Korwin-Kossakowska, A. 2007. Public health hazard due to mastitis in dairy cows. Ani. Sci. Paper. Reports., 25(2): 73-85.

View at Google Scholar

8.Hauser, A.R. 2009. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nature. Rev. Microbiol., 7(9): 654.

View at Google Scholar View at PUBMED

9.Kaminski, A., Gupta, K.H., Goldufsky, J.W., Lee, H.W., Gupta, V. and Shafikhani, S.H. 2018. Pseudomonas aeruginosa ExoS induces intrinsic apoptosis in target host cells in a manner that is dependent on its GAP domain activity. Sci. reports., 8(1): 14047.

View at Google Scholar View at PUBMED

10.Kelly, E.J. and Wilson, D.J. 2016. Pseudomonas aeruginosa mastitis in two goats associated with an essential oil–based teat dip. J. Vet. Diag. Invest., 28(6):760-762.

View at Google Scholar View at PUBMED

11.Kirby, W.M., Bauer, A.W., Sherris, J.C. and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493-496.

View at Google Scholar View at PUBMED

12.Kobayashi, H., Isozaki, M., Fukuda, T., Anzai, Y. and Kato, F. 2013. Surveillance of fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Open J. Med. Microbiol., 3(02): 144.

View at Google Scholar

13.Krumperman, P.H. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol., 46(1): 165-170.

View at Google Scholar View at PUBMED

14.Livermore, D.M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis., 34(5): 634-40.

View at Google Scholar View at PUBMED

15.Lyczak, J.B., Cannon, C.L. and Pier, G.B. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes. Infect., 2: 1051–1060.

View at Google Scholar View at PUBMED

16.Nam, H.M., Lim, S.K., Kang, H.M., Kim, J.M., Moon, J.S., Jang, K.C., Joo, Y.S. and Jung, S.C. 2009. Prevalence and antimicrobial susceptibility of gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J. dairy. Sci., 92(5): 2020-2026.

View at Google Scholar View at PUBMED

17.Park, H.R., Hong, M.K., Hwang, S.Y., Park, Y.K., Kwon, K.H., Yoon, J.W., Shin, S., Kim, J.H. and Park, Y.H. 2014. Characterisation of Pseudomonas aeruginosa related to bovine mastitis. Acta. Vet. Hung., 62(1): 1-12.

View at Google Scholar View at PUBMED

18.Quinn, P.J., Markey, B.K. and Carter, M.E. 2002. Veterinary microbiology and microbial disease. Ames, Iowa: Iowa State University Press.

View at Google Scholar

19.Saadoon, Z.S. and Zghair, Z.R. 2019. Molecular Detection of Pseudomonas aeruginosa by Using Algd, Plch and Lasb Genes and Pathological Study of the Virulent Isolate from Human Blood. Plant. Archives., 19(2): 1633-1639.

View at Google Scholar

20.Scaccabarozzi, L., Leoni, L., Ballarini, A., Barberio, A., Locatelli, C., Casula, A., Bronzo, V., Pisoni, G., Jousson, O., Morandi, S. and Rapetti, L. 2015. Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PloS one., 10(11): p.e0142973.

View at Google Scholar View at PUBMED

21.Sharma, A. and Sindhu, N. 2007. Occurrence of clinical and subclinical mastitis in buffaloes in the State of Haryana (India). Ital. J. Ani. Sci., 6: 965-967.

View at Google Scholar

22.Smith, S., Ganiyu, O., John, R., Fowora, M., Akinsinde, K. and Odeigah, P. 2012. Antimicrobial Resistance and Molecular Typing of Pseudomonas aeruginosa Isolated from Surgical Wounds in Lagos, Nigeria. Acta. Med. Iran., 50(6): 433-438.

View at Google Scholar View at PUBMED

23.Spilker, T., Coenye, T., Vandamme, P. and LiPuma, J.J. 2004. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol., 42(5): 2074-2079

View at Google Scholar View at PUBMED

24.Taee, S.R., Khansarinejad, B., Abtahi, H., Najafimosleh, M. and Ghaznavi-Rad, E. 2014. Detection of algD, oprL and exoA genes by new specific primers as an efficient, rapid and accurate procedure for direct diagnosis of Pseudomonas aeruginosa strains in clinical samples. Jundishapur. J. Microbiol., 7(10): e13583.

View at Google Scholar View at PUBMED

25.Vance, R.E., Rietsch, A. and Mekalanos, J.J. 2005. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect. Immun., 73: 1706–1713.

View at Google Scholar View at PUBMED

26.Vasquez-Garcia, A., Silva, T.D.S., Almeida-Queiroz, S.R.D., Godoy, S.H., Fernandes, A.M., Sousa, R.L. and Franzolin, R. 2017. Species identification and antimicrobial susceptibility profile of bacteria causing subclinical mastitis in buffalo. Pes. Vet. Brasil., 37(5): 447-452.

View at Google Scholar

27.Wayne, P. 2009. Clinical and Laboratory Standards Institute (CLSI) performance standards for antimicrobial disk diffusion susceptibility tests 19th ed. approved standard. CLSI document M100-S19, 29 (2011), M100-S21.

View at Google Scholar

@ Journal of Animal Research | In Association with Association of Mastitis

30806494 - Visitors since March 23, 2019